If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-23k+4=0
a = 4; b = -23; c = +4;
Δ = b2-4ac
Δ = -232-4·4·4
Δ = 465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{465}}{2*4}=\frac{23-\sqrt{465}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{465}}{2*4}=\frac{23+\sqrt{465}}{8} $
| x÷4=794 | | (2/x-3)+(1/x+2)=(3/x-2) | | (3x-9)/5=9 | | 3x2-2=190 | | -2(x+2)+(2/5)=-2 | | (X-4)^2=4x | | 7m+9/2=13 | | (X-4)=4x | | -2(x+2)+2/5=-2 | | 6(4-x)=0 | | (x+9)/7=4 | | x÷4-3=797 | | 70+17x=0 | | -22-2x=6-4x | | -(1/2)x=-3 | | (-1/2)x=-3 | | 5t+38=10 | | (11k-14)/4-4=2k | | (9x-20)/4+3=2x | | 7x+79=184 | | -4x=+8=-12 | | 2)x-20+2x=35 | | 8=3-x | | 2(3x+4)=-4(4x-4)+3x | | 4(5x+3)=-5(4x-5) | | -72-13x=-18x+3 | | 238-16v=-3v+4 | | 3^x=20 | | 268-2x=15x+13 | | 2r+10=42-14r | | 12v+9=87-v | | 4r+8=48-r |